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We investigate a mode of category learning inspired by the distinction in machine
learning between generative (learning about the basis of categories) and
discriminative (learning how to tell categories apart) methods. Whereas the most
commonly studied mode of human category learning (classification) is strongly
discriminative, a strongly generative task is one in which the learner creates
examples of categories. On each learning trial, a minimal featural cue is the starting
point for building a complete member of a target category. The learner receives
feedback on whether the generated example is a category member. In a 2x3
design, we manipulated the type of learning (generation vs. classification) for three
different elemental category structures based on three binary features. Using a set
of test measures, we found differences in the quality of category knowledge for the

two learning modes that were consistent with the generative/discriminative
framework.

Shepard, Hovland, and Jenkins (1961) tested ease of learning
of six elemental category structures (I < Il < [1,IV,V < VI)
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Task effects in Category Learning
Classification learning is the most widely studied task in
categorization research.
- Recent interest in alternative training modes
- Feature inference (Yamauchi & Markman, 1998)
- Observation (Levering & Kurtz, 2011)

Successful classification only requires knowledge of the difference
between categories (discriminative learning; Ng & Jordan, 2001).
- We developed a novel training mode, where learners are asked

to ‘generate’ examples of a target category.

- Will generate learning result in generative representations?

- Can models of classification account for such learning?

Generate learning is theoretically similar to feature inference
- Feature inference, but for more than one feature
- Generate is qualitatively different since learners ‘make’ examples

Previous work on generation of categories (Jern & Kemp, 2013).
No known prior research on generate task for category learning.

Classification Task

Generate Task

* Trials begin with a single feature. | *
* Subjects asked to complete it as
a member of a target category.

* Image is updated to reflect the
selection after each response.

* Feedback provided when the
example is complete.

Trials begin with completed

examples.

* Subjects asked to guess the
category that example
belongs to.

* Participants receive feedback

on their responses.

Click on the choices below to turn
what you see into a Tannet leaf.

Click a button to select the correct

Training Test Measures
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Modeling Generate Learning using DIVA

DIVA (Kurtz, 2007) is a DIVergent Autoencoder that learns
to reconstruct inputs on dedicated category channels.

. . DIVA
- DIVA takes as input a single feature

(missing features coded as 0 in a [-1 1] space) “‘ “‘

- Generates example based on reconstruction O
along targeted channel (pattern completion) @@@

- Model is trained on the generated example TANNET
i Generate | | Classity |
T r.c AN 2
o i D T e A
§ O_6-§—— ------- = -2- -------------------------------------------------- : -é:_ -’aa'azg .................................. -
-} .
04 R
o2 e
0

> 4 6 8 10 2 4 6 8 10
Training block (*averaged over 12 trials)

DIVA captures qualitative & quantitative patterns of learning
all fits <.017 MSQ

Generate Classify
Evidence for differences in Type Il learning 000
10—
||Generate | Endorsement Results 001
IClassiy | ﬁ(l)

- Classify replicates bimodal
distribution; Kurtz et al. (2013)
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Discussion

- We developed and tested a new generative learning mode,
inspired by a distinction proposed in machine learning research.

- Using a set of test phases, we conclude that generate learners
differed from classification learners in speed of acquisition of the
categories, as well as the type of knowledge learned.
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