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Abstract Reference point approaches have dominated the
study of categorization for decades by explaining classifi-
cation learning in terms of similarity to stored exemplars
or averages of exemplars. The most successful reference
point models are firmly grounded in the associative learning
tradition—treating categorization as a stimulus general-
ization process based on inverse exponential distance in
psychological space augmented by a dimensional selective
attention mechanism. We present experiments that pose a
significant challenge to popular reference point accounts
which explain categorization in terms of stimulus gener-
alization from exemplars, prototypes, or adaptive clusters.
DIVA, a similarity-based alternative to the reference point
framework, provides a successful account of the human
data. These findings suggest that a successful psychology
of categorization may need to look beyond stimulus gen-
eralization and toward a view of category learning as the
induction of a richer model of the data.
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Introduction

A central goal of categorization research is to understand
how people learn to correctly classify a set of items based
on experience. The most complete and widely accepted
accounts of classification learning conform to a ‘reference
point’ framework—according to which learners make clas-
sification decisions by evaluating the similarity of a target
to stored locations in the dimensional space of the objects
in the domain (for overviews, see Murphy, 2002; Pothos
and Wills, 2011). There has been extensive debate over
the particulars within the reference point framework (e.g.,
Homa, 1984; Nosofsky, 1992a; Smith and Minda, 2000;
reviewed in Murphy, 2002). For example, the prototype
view (Homa et al., 1979; Minda & Smith, 2001; Posner &
Keele, 1968; Reed, 1972; Rosch & Mervis, 1975) posits that
categories are represented by the central tendency (proto-
type) of the category members experienced by the learner.
Exemplar theory (Brooks, 1978; Kruschke, 1992; Medin
& Schaffer, 1978; Nosofsky, 1984; 1986) states that cate-
gory representations consist of a collection of observations
stored in memory. There is also an intermediate position that
posits reference points summarizing clusters of examples
(Love et al., 2004; Vanpaemel & Storms, 2008); see also
Anderson (1991) and Rosseel (2002). Our present question
is about a core design principle held in common across all of
these: that learners categorize based on similarity to stored
reference points.

Generally speaking, the term “reference point model”
can refer to any member of broad class of formal approaches
in which category representations consist of stored points
in a multidimensional space and inputs can be mapped
into that space for the purposes of determining geometric
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distances. Here, we use the term to describe canonical
versions of the reference point framework in which classifi-
cation is explained in terms of two underlying explanatory
principles. The first follows from Shepard’s (1957, 1987)
influential work in stimulus generalization: leading models
(ALCOVE, Kruschke (1992); SUSTAIN, Love et al. (2004);
GCM, Nosofsky (1986)) assume that similarity to refer-
ence points is computed according to an inverse exponential
function of distance in a task-independent psychological
space. By consequence, the close proximity of a target to
a stored reference point produces strong evidence in favor
of the category associated with that reference point. The
impact of similarity to a reference point drops off sharply
with distance (the sensitivity or specificity of the region of
activation around a reference point is determined by a free
parameter). Exemplar models lack any form of abstraction
in the selection of reference points and therefore manifest
stimulus generalization theory directly; prototype and clus-
ter models deviate only in the presence of an abstraction
process allowing reference points to localize as the average
(centroid) of multiple observations. The second explana-
tory principle is the use of dimensional selective attention
such that the spatial distance between a target and refer-
ence points is computed under the potential stretching or
shrinking of each dimension. The dimensions are assumed
to exist within a ‘psychological space’ space of the inputs,
typically estimated using Multidimensional Scaling (MDS)
analyses conducted on pairwise similarity data (i.e., confu-
sion matrices; see Shepard, 1957, 1987). Beyond attentional
stretching and shrinking of dimensions, the psychological
space is assumed to be task-independent: stimulus repre-
sentation is not altered in the course of category learning,
and the same representation is used in many different cog-
nitive processes (e.g., classification, recognition, inference;
see Nosofsky, 1992b).

Exemplar models, based on stimulus generalization the-
ory supplemented with selective attention, have achieved
unparalleled levels of success in fitting human performance
in traditional artificial classification learning. To be spe-
cific, either the GCM or ALCOVE (an implementation of
the exemplar view as a network model with error-driven
learning of attentional and associative weights) have pro-
vided compelling accounts of how people learn: ill-defined
categories like the 5-4 problem (Medin and Schaffer, 1978;
Nosofsky, 1984), elemental classifications (Shepard et al.,
1961; Nosofsky et al., 1994a), the relation between catego-
rization and memory (Nosofsky, 1986), the inverse base rate
effect (Kruschke, 1992, 2001, 2003), and attentional filtra-
tion versus condensation of stimulus dimensions (Gottwald
& Garner, 1972; Kruschke, 1993). The available evidence
has led to fairly broad acceptance of the idea that clas-
sification learning is well explained in terms of stimulus
generalization plus selective attention. Much of the ongoing

debate in classification learning research has focused on the
possible need for hybrid models or separate systems that
form explicit verbal rules (Anderson & Betz, 2001; Ashby
et al., 1998; Denton et al., 2008; Erickson & Kruschke,
1998; 2002; Nosofsky et al., 1994b).

Our approach: testing the explanatory power
of categorization as stimulus generalization

We present experiments challenging the idea that people
make classification responses using stimulus generaliza-
tion from stored reference points within a task-independent
psychological space of the stimuli. The design of the behav-
ioral studies follows from a priori predictions made by two
formal models: Nosofsky’s (1984, 1986) Generalized Con-
text Model (GCM), and the DIVergent Autoencoder model
(DIVA; Kurtz, 2007, 2015). The GCM is the canonical
exemplar-based model for predicting the overall ease of
learning a classification problem and classification perfor-
mance after learning. This is accomplished by computing
the attention-weighted similarity of targets to all stored
exemplars. Classification behavior is modeled based on
the relative summed similarity of the stimulus to mem-
bers of each category—where the category with the greatest
summed similarity will garner the greatest classification
probability.

We contrast the GCM’s predictions with an approach that
does not conform to stimulus generalization theory. DIVA
(Kurtz, 2007, 2015) offers a theoretical alternative to the ref-
erence point framework by representing each category as a
generative model (Ng & Jordan, 2002) of the statistical reg-
ularities among its members. The DIVA model (see Fig. 1)
is instantiated fully within the connectionist tradition—at
the start of a training run, DIVA is initialized with a col-
lection of input units encoding feature values of the objects
within the domain, a hidden recoding layer shared among
the categories, and divergent output channels correspond-
ing to each of the known classes. Rather than learning to
associate reference points with class labels, the weights in
the DIVA network are trained auto-associatively—to learn

Category A

Category B

Category-specific reconstructions
drives classification outcomes

|

Adaptive recoding (hidden) layer
supports reconstruction learning

N

Input layer encodes observed feature
values of a stimulus

Fig. 1 Depiction of the DIVA network
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to predict features within each category—using the stan-
dard backpropagation technique (Rumelhart et al., 1986):
when an object is observed in concurrence with its cor-
rect category label, the network’s weights are updated to
minimize reconstructive error along the correct category
channel. Classification is then based on the relative amount
of reconstructive error across category channels—DIVA is
most likely to classify an item along the channel with the
least error. In sum, the model learns to successfully recon-
struct the members of each category along their category
channel and produces distorted versions of the input when
trying to reconstruct the input along the wrong channel. The
training examples for each category and novel examples that
are sufficiently like them will be well reconstructed along
the appropriate channel (likely to be seen as a category
member), while anything else will be poorly reconstructed
(likely to be rejected as a category member).

DIVA and the GCM are comparable in that classification
under both models is driven by similarity. Importantly, how-
ever, they differ in their use of similarity to classify objects.
The GCM classifies based on attention-weighted distance to
exemplar reference points and explicitly relies on Shepard’s
law. In contrast, DIVA classifies examples based on relative
reconstructive success (how well an example conforms to
the type of input that the model has learned to recode and
decode with minimal distortion along each category chan-
nel). Importantly, reconstructive success can deviate from
the predictions of attention-weighted distance, and thus the
contrast between DIVA and the GCM highlights the central
role of stimulus generalization in category learning. We can
therefore evaluate the role of stimulus generalization in cat-
egory learning by comparing the predictions made by the
two models.

A priori model simulations

We began with a comparison of the generalization per-
formance of the two models after training on a variation
of the well-known exclusive-OR (XOR) category struc-
ture. XOR categories are commonly studied in psychol-
ogy and machine learning research. To give an illustrative
case: one category might consist of white squares (00) and
black circles (11), while the contrast category consists of
black squares (10) and white circles (01). The usual set-up
for XOR classification learning tasks uses binary stimulus
dimensions—meaning that there can be no test of gener-
alization. We instead used a two-dimensional, continuous
adaptation of the XOR structure that maintains the logical
structure of the categories while allowing a test of general-
ization. We found that the two models were broadly consis-
tent in their predictions for learning and generalization.
However, a much more interesting outcome arose when
we tested a variation of XOR with the training set altered:
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one category remained intact, but the other was reduced by
half such that one of the four traditional quadrants was left
untrained (see Fig. 2). This alteration makes a considerable
impact by changing the non-linearly separable XOR prob-
lem into one that can be learned in terms of a single diagonal
boundary that separates the categories. Given training on
this partial-XOR structure, we found that DIVA tended to
produce two qualitatively distinct generalization behaviors
across different training runs with the same parameteriza-
tion: (1) extending the Complete (two-quadrant) category to
the untrained area or (2) extrapolating the Reduced (one-
quadrant) category to the untrained area. Note that the
second pattern parallels the standard XOR structure.

The second prediction is highly notable because the crit-
ical test items in the untrained quadrant are more proximal
to the exemplars of the Complete category. Specifically, the
central exemplar in the untrained quadrant is, on average,
1.67 city blocks away from members of the Complete cate-
gory and 3 city blocks away from members of the Reduced
category (consistent results arise using a Euclidean metric;
our simulations use the city block metric due to the separa-
ble dimensions in the stimuli we study, see Garner (1974)).
To be clear, the second predicted pattern of generalization
amounts to a dissociation between proximity to exemplars
and categorization: the target is classified as a member of
the Reduced category even though it is closer to known
members of the Complete category.

To estimate the frequency of Reduced category gener-
alization in DIVA, we conducted a ‘grid-search’ to gener-
ate predictions for partial-XOR generalization over a wide
range of settings for DIVA’s four parameters: number of hid-
den nodes, learning rate, initial weight range, and a focusing
parameter, § (Conaway and Kurtz, 2014; Kurtz, 2015). At
each point in the search, DIVA was initialized 2000 times
(random initial weights and random presentation sequence)
and trained for 12 blocks (12 observations of each of the
training exemplars). The exemplars were represented within
a £1 space, DIVA’s output units were linear, and its hid-
den units were logistic. For each point in the grid-search,
we calculated the proportion of initializations that produced
the pattern of interest operationalized as a clear majority

B : A
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A X X X

A "X X X

Fig.2 Partial XOR categories. Critical transfer items are marked with X
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(six or more out of nine) of items in the critical general-
ization region being classified as a member of the Reduced
category. Results are plotted as a density distribution across
all points in the grid search (Fig. 3). As can be seen, there
are many parameterizations of DIVA that produce the key
behavior of extrapolating the Reduced category.

To provide a description of what enables this behavior in
DIVA, we first examined the parameterizations which most
commonly produced large rates of extrapolation (> 65 % of
initializations). These parameterizations had in common a
smaller recoding space (2—5 hidden units), a strong learning
rate (0.9 — 1.0), and a small to moderate weight range (typ-
ically less than £1.5). DIVA’s B parameter did not appear
to affect the rate of extrapolation. In-depth examination of
fully trained DIVA networks revealed the model’s basis for
this prediction. In every observed instance of extrapolation,
all of DIVA’s hidden units encoded the value of just one of
the two stimulus dimensions (e.g., size). The model learns
strongly positive weights connecting the hidden units to the
Complete category channel, indicating it has learned a key
within-category feature correlation: within the Complete
category, exemplars are either small and black or large and
white. At test, this channel’s reconstructions follow the cor-
relation directly—novel exemplars are reconstructed along
a diagonal line capturing its training items, and interpolat-
ing all other items between the two clusters of Complete
category exemplars.

The network, however, learns a more varied basis to
reconstruct the Reduced category items from this hidden
recoding. Whereas the weights connected to the feature
encoded in the hidden representation (i.e., size) are strongly
positive, the weights connected to the opposite feature
(i.e., color) are strongly negative, indicating that DIVA
has learned the opposite correlation within the Reduced
category. At test, the Reduced category channel there-
fore reconstructs novel items along the negative diagonal,
capturing the Reduced category exemplars and extending
into the untrained area. In effect, the model learns feature
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Fig. 3 DIVA ‘grid-search’ results. Left Any initialization which pro-
duced at least 6/9 Reduced category responses to items in the untrained
quadrant is counted as an extrapolator. Right Results visualized with
alternative response thresholds (7-9 Reduced category responses)

correlations capturing each category’s exemplars, and it learns
that the direction of the correlation is opposite between the
categories. See Fig. 4 for a depiction of this solution.

By contrast, true to its foundation in stimulus generaliza-
tion, the GCM’s performance was typified by generalization
based on the more proximal exemplars of the Complete cat-
egory (although neutral generalization can be achieved with
a more extreme value for the sensitivity parameter). Impor-
tantly, the GCM’s predictions are not specific to exemplar
representations: stimulus generalization from learned cat-
egory prototypes or clusters of examples does not change
the underlying similarity dynamics and therefore produces
the same behavior. As such, the GCM’s performance effec-
tively stands in for the whole explanatory framework based
on stimulus generalization from reference points.

Experiment 1

The a priori model predictions clearly motivate a behavioral
study to test human generalization performance after learn-
ing the partial-XOR categories. While behavioral experi-
ments using XOR categories are ubiquitous in the cate-
gory learning literature, the partial-XOR structure has only
been lightly studied. Bourne (1982) and Nosofsky (1991)
employed a partial-XOR structure using a binary, four-
dimensional stimulus set, but their analyses focus primarily
on typicality measures and neither report addresses how
individual learners generalize to the untrained quadrant.
We were interested in determining whether human learn-
ers would extrapolate the Reduced category to the critical
region despite the items in that quadrant being closer to
the training examples in the two quadrants of the Com-
plete category. In doing so, we test the core premise of
categorization as stimulus generalization. If DIVA makes a

Complete (A)

Reduced (B)

Reduced category
reconstructs color as

Hidden layer encodes " !
opposite of size.

size feature only.

7i B A
LA Xy
-1 +1

Fig. 4 Depiction of DIVA’s solution supporting extrapolation of the
Reduced (B) category to critical items X. The above network also
correctly classifies the training items. The values depicted are purely
illustrative—hidden activations are logistic and bias units are used
in our DIVA simulations. Other solutions are learned to support
Proximity-based generalization
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psychologically valid prediction, then we should expect a
mix of two profiles of generalization performance; if the
reference point framework is correct, then generalization
should be proximity-based or neutral, but never driven by
extrapolation of the Reduced category.

Participants and materials

Thirty undergraduates from Binghamton University partic-
ipated toward partial fulfillment of a course requirement.
Stimuli were squares varying in shading and size (see Fig. 5
for samples). Exemplars were automatically generated at
seven positions on each dimension (7 shading x 7 size = 49
examples). In an independent scaling study with these mate-
rials, we found the two dimensions to be nearly equal in
perceptual salience. The assignment between perceptual and
conceptual dimensions was randomized across participants.

Procedure

Participants completed 96 training trials (12 randomized
blocks of eight items). In order to equate for category
frequency, the two Reduced category exemplars were pre-
sented twice within each block. This way of handling the
unbalanced classification was considered the best option,
although it does create variation in item presentation fre-
quency (see Nosofsky, 1988). Little is known about how
item frequency impacts generalization. After training, par-
ticipants completed 49 generalization trials consisting of
items sampled at seven positions on each dimension. All
training examples were included (intermixed) in the gener-
alization phase.

Participants were informed that there would be test tri-
als prior to beginning the experiment. The instructions were
neutral in that they did not encourage learners to engage in
hypothesis testing to discover a rule (see Kurtz et al., 2013).
On each trial, a single stimulus was presented on a computer
screen and learners were prompted to make a classification

r: 230

2:230 |:|
b: 230

Color (RGB)

r: 25
=2 | [l

b: 25

Side Length (cm)

2.5 7.1

Fig. 5 Sample stimuli (not drawn to scale)
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decision by clicking one of two buttons labeled ‘Alpha’
and ‘Beta’. During the training phase, learners were given
corrective feedback on their selection. Feedback was not
provided during the generalization phase. We note that as
part of this experiment we also collected data in a full-
XOR condition (a description of these data can be found in
Conaway and Kurtz, 2015).

Results

Learners had little trouble acquiring the categories: clas-
sification performance was highly accurate by the end of
the training phase (typified by perfect accuracy in the final
training block). To assess generalization performance, we
calculated the proportion of Reduced category responses
made by each learner for the nine novel test items in the
untrained quadrant. A histogram of the data (see Fig. 6)
shows two qualitatively distinct groups of learners. A major-
ity of the learners were proximity-based generalizers of the
Complete category, but a substantial group of learners sys-
tematically generalized from the (more distant) Reduced
category. Specifically, 9/30 learners were extrapolators who
produced six or more Reduced category responses to the
test items. The average generalization gradient for each sub-
group is shown in Fig. 7. The proximity (n = 20) and
extrapolation (n = 9) subgroups did not differ in their train-
ing accuracy, #(27) = 0.012, p > 0.6. See Table 1 for
descriptive statistics for the performance of these groups on
the training exemplars.

Discussion
Our behavioral experiment was broadly supportive of
DIVA’s predictions. After training on a partial-XOR clas-

sification, a subset of learners extrapolated the Reduced
category to novel items that are more proximal to members

30

25

20

15

Number of Participants

0

01 2 3 45 6 7289
Frequency of Reduced Category Responses

Fig. 6 Histogram of Reduced category responses to items in the
untrained area
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Fig. 7 Generalization gradients for the extrapolation (left, n = 9) and
proximity (right, n = 20) subgroups (one participant who made 5
Reduced category responses was excluded)

of the Complete category. This pattern of generalization,
while not modal, occurred frequently and therefore demands
psychological explanation. The challenge for models is to
account for the distribution of two commonly occurring
profiles. While the GCM can to handle the majority result
(proximity-based generalization), its commitment to stim-
ulus generalization theory undercuts the model’s ability to
predict the second major profile. By contrast, DIVA could
successfully predict the occurrence (and relative rate) of
both proximity and extrapolation-based generalization. The
observed proportion of human learners who were extrapo-
lators fits well with the density distribution shown in Fig. 3.
Since DIVA is free from a commitment to similarity as dis-
tance to reference points, it is able to predict extrapolation
of the Reduced category to novel exemplars in the missing
quadrant.

The presence of the extrapolator subgroup would appear
to conflict with the core claims made by reference point
theories, and it would appear to support DIVA’s account
that people acquire knowledge of the within-class feature
relationships. However, it is important to more carefully
consider how Reduced category extrapolation could be
explained within the reference point framework. For exam-
ple, because items in the untrained area are dissimilar to the
known members of the Reduced and Complete categories,
reference point models could predict that some learners
are guessing at test. Is it possible that the learners in our
extrapolation subgroup simply classified the novel items at
random? Some doubt can be shed on this account based
on the design of our experiment: because we tested partici-
pants on a total of nine exemplars within the critical region,

Table 1 Subgroup accuracies on the training exemplars presented
during the training and generalization phases (standard deviation in
parenthesis)

Training Generalization
Proximity 0.93(0.06) 0.96(0.09)
Extrapolation 0.92(0.11) 0.89(0.12)

learners using a guessing strategy are most likely to produce
4-5 Reduced category responses to these exemplars, and
larger differentials are less probable. We, however, observed
only one participant who produced 4-5 Reduced category
responses (see Fig. 6). Nonetheless, lacking relevant behav-
ioral data, we cannot entirely dismiss guessing as an account
of our results.

Alternatively, it is also possible that learners encoded as
an additional feature whether the stimulus is along the posi-
tive (Complete category) or the negative (Reduced category)
diagonal. This additional feature would render the novel
items in the untrained quadrant more proximal to members
of the Reduced category, producing extrapolation. Problem-
atically, this account would violate a core claim made by
stimulus generalization as applied to category learning: that
the stimulus encoding is independent of the classification
learning task (Nosofsky, 1992b). But, as with the guessing
account, we cannot rule out feature learning without further
experiments.

In Experiments 2A and 2B, we report behavioral stud-
ies that explicitly address these two accounts (Guessing and
Feature Learning). In each experiment, we also provide
a replication of the core phenomenon: Reduced category
extrapolation to novel items that are more proximal to
members of the Complete category.

Experiment 2A

The guessing account of Experiment 1 proposes that,
because the critical items are fairly distant from known
members of both categories, many participants classified
the critical items at random, and some learners by chance
produced six or more Reduced category responses. We can
address this account using the modification of the partial-
XOR classification depicted in Fig. 8. In this variation, the

YYY VAV
YYY Z 7 7
YYY VAV

B A

B A
WWW X X X
WWW A X X X
WWW A X X X

Fig. 8 Partial XOR categories tested in Experiment 2A. Critical
transfer items are marked with W, X, Y, and Z
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categories (A and B) lie in the lower-right quadrant, yield-
ing four untrained areas (W, X, Y, and Z). Under this set-up,
critical items X possess the same status as in Experiment 1:
learners can either generalize the more proximal Complete
category, or extrapolate the Reduced category. W, Y, and
Z are, however, more distant from the training examples
compared to X. Thus, if extrapolation simply occurs due
to guessing, then extrapolators should respond at random
to all the critical items. If, in contrast, the extrapolation we
observed in Experiment 1 was deliberate, then extrapolators
should also systematically classify items in the other critical
regions.

Participants and materials

Thirty undergraduates from Binghamton University partic-
ipated toward partial fulfillment of a course requirement.
Stimuli were identical to Experiment 1 with the exception
that they were generated at 12 (rather than seven), points
along each dimension.

Procedure

The training phase was identical to Experiment 1. After
training, participants completed 42 generalization trials con-
sisting of nine items sampled from each of the four corners
of the stimulus space (W, X, Y, Z; see Fig. 8), as well as the
six unique training items. All other aspects of the procedure
are identical to Experiment 1.

Results

As in Experiment 1, learners easily mastered the partial-
XOR classification: accuracy was near-perfect in the final
training block (M = 0.99, SE = 0.01). To assess gen-
eralization performance, we calculated the proportion of
Reduced category responses made by each learner to the
nine critical items in each quadrant of the stimulus space (W,
X, Y, Z). Histograms of these data can be found in Fig. 9. As
depicted in the lower-right panel of Fig. 9, we successfully
replicated the core result of Experiment 1: a subset of learn-
ers (8/30) systematically generalized the Reduced category
to critical items X, and a second group (21/30) generalized
the proximal Complete category to these items. One partic-
ipant produced 5 Reduced category responses and did not
fall into either group. As before, the proximity and extrap-
olation subgroups did not differ in their training accuracy,
t(27) =0.58, p > 0.5.

Figure 10 depicts responses from the extrapolation and
proximity subgroups to the critical items in each quadrant.
If the extrapolators had simply classified critical items X
at random, then they should not have systematically clas-
sified the critical items in areas W, Y, and Z. Extrapolator
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Fig. 9 Frequency of Reduced category responses to the critical areas
tested in Experiment 2A

responses in these areas were beyond chance (4.5/9 Reduced
category responses): items from W were classified into the
Complete category, #(7) = 3.93, p = 0.006, items from
Y were classified into the Reduced category, 7(7) = 4.48,
p < 0.003, and items from Z were classified into the Com-
plete category, 1(7) = 3.32, p = 0.013. The subgroups did
not differ in their response to areas W, Y, and Z (ps > 0.3),
but they did differ in their responses to X, ¢(27) = 22.3,
p < 0.001.

Summary

Experiment 2A provides strong evidence against a “guess-
ing” account of Experiment 1. We observed that individuals
who extrapolated the Reduced category also systematically
classified critical items in other regions of the stimulus
space. Thus, these learners are not likely to have assumed
a random response strategy simply because the critical
items are distant from the training examples. Instead, our

B Proximity
C—1Extrapolator

[ R T Y B = S e CRN o

Reduced Category Responses

w X Y z

Fig. 10 Frequency of Reduced category responses to all critical areas
tested in Experiment 2A. Error bars reflect 1 standard error
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extrapolators appear to have deliberately classified critical
items into the Reduced category.

Experiment 2B

Rather than learning within-class feature relationships (as
proposed by DIVA), it is also possible that our extrapola-
tors classified on the basis of distance to reference points
within a higher dimensional space. Specifically, it is possi-
ble that, through classification training on the partial-XOR
categories, some learners encoded a new feature essentially
representing whether the stimulus lies along the positive
(Complete category) or the negative (Reduced category)
diagonal. At test, this feature would render the critical items
more proximal to members of the Reduced category, thus
producing the extrapolation profile.

It is worth nothing that feature learning processes are
beyond the scope of stimulus generalization as applied
to categorization. Not only is the task-independence of
features a core assumption in reference point theories
(Nosofsky, 1992b), but the very construct of similarity only
possesses explanatory power if constraints are placed on
the underlying feature representation (see Goldstone, 1994;
Goodman, 1972; Medin et al., 1993; Murphy and Medin,
1985). Without proper constraints on the features, reference
point models are capable of explaining theoretically any
result.

To address the feature learning account of Reduced cat-
egory extrapolation, we conducted a second replication and
extension of Experiment 1. The key difference is that, after
generalization, participants are asked to rate the similarity
between pairs of examples. If Reduced category extrapola-
tion is due to a feature learning process, then each learner’s
similarity ratings should correspond to their generalization
performance: individuals who extrapolate should view the
critical items as more similar to the Reduced category than
the Complete category. The alternative pattern of results
(extrapolators view the Complete category as more similar
to the critical items) would stand against the very founda-
tion of the reference point view: that perceived similarity is
the basis for classification.

Participants and materials

Thirty-one undergraduates from Binghamton University
participated toward partial fulfillment of a course require-
ment. Stimuli were identical to Experiment 1.

Procedure

The training phase was identical to Experiment 1. However,
to reduce the overall number of trials, the generalization

phase consisted only of targeted critical trials (rather than
the entire gradient). After training, participants completed
15 generalization trials consisting of the nine critical items
plus the six unique training items (see Fig. 2).

Before training and after generalization, participants
completed a pairwise similarity phase. On each trial, two
stimuli were presented side-by-side, and participants were
asked to rate the similarity of the pair on a 1 (not at all
similar) to 9 (highly similar) scale. Each similarity rating
phase consisted of (A) trials in which a critical item (X, in
Fig. 2) was paired with a training exemplar, and (B) trials in
which training items from opposite quadrants were paired
with one another. The two trial types were randomly inter-
mixed. The data from the second type (12 trials total), as
well as the data collected prior to training, was collected for
a separate project—here we will focus our discussion on the
ratings between critical items and training exemplars after
generalization. To reduce the number of trials (there are 48
total pairs of critical and training items), we tested only a
subset of the possible pairs. We constructed the similarity
rating phase using four critical items (the four items from
the lower-right corner of the space), and four training items
(the outermost examples from the Complete category), and
both examples from the Reduced category, producing a total
of 16 trials.

Results

As in Experiment 1 and 2A, the partial-XOR classification
was not difficult for learners to acquire: accuracy was near-
perfect in the final training block (M = 0.98, SE = 0.02).
We also observed a notably larger number of extrapolators
(defined as individuals who produced 6+ Reduced category
responses to items in the critical area): whereas 14/31 learn-
ers extrapolated the Reduced category to the untrained area,
15/31 learners generalized the proximal Complete category.
One learner produced five Reduced category responses and
did not fall into either group. The proximity and extrapo-
lation subgroups did not differ in their training accuracy,
t(28) = 1.66, p = 0.11. Figure 11 depicts the histogram of
the frequency of Reduced category extrapolation.

The key question for this experiment concerns whether
individuals in the extrapolation subgroup view the items
in the untrained area as more similar to members of
the Reduced category. If these individuals extrapolated as
a result of having learned a new feature (encoding the
valance of the diagonal), then they should more highly
rate the similarity of Reduced-Critical pairs compared to
Complete-Critical pairs. Similarity ratings for each subject
are depicted in Fig. 12. As can be seen in Fig. 12, only
two (of 14) extrapolators produced greater similarity ratings
for Reduced-Critical pairs (and only one of these individ-
uals produced considerably greater ratings). Although a
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Fig. 11 Experiment 2B histogram of Reduced category responses to
items in the untrained area

traditional T-Test reveals no difference between Extrapo-
lator responses to Reduced-Critical and Complete-Critical
pairs, #(13) = 1.20, p = 0.25, the outlying data point
renders a nonparametric test more appropriate. A Wilcoxon
signed-rank test supports a statistical difference between
Extrapolator responses to Reduced-Critical and Complete-
Critical pairs, Z = 90, p = 0.012. The extrapolation
and proximity subgroups did not differ in their ratings of
Reduced-Critical pairs, #(28) = 0.75, p = 0.46, but the
proximity subgroup produced marginally greater similarity
ratings for Complete-Critical pairs, 7 (28) = 1.94, p = 0.06.

Summary

Experiment 2B provides strong evidence against the “fea-
ture learning” account of Experiment 1: the majority of
individuals in the extrapolation subgroup did not view the
critical items as more similar to the Reduced category. By
consequence, these learners are not likely to have extrapo-
lated the Reduced category as a result of a feature learning

T T T
Proximity
L Extrapolation i

(NSO N L =) U N B SR o]
T

Reduced - Critical Similarity

—_
T

1 2 3 4 5 6 7 8 9
Complete - Critical Similarity

Fig. 12 Experiment 2B averaged similarity ratings between critical
items and members of the Reduced and Complete categories. Each
participant is plotted as a separate point
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process by which the Reduced category became more simi-
lar to the untrained area. These results in fact contradict the
very core of the reference point account of category learn-
ing: many learners viewed critical items as a good match to
the Reduced category, but more similar to members of the
Complete category.

General discussion

According to the dominant reference point view, category
knowledge is represented in terms of stored reference points
that are associated with category labels. The computation
of similarity to reference points is based on distance in
a task-independent psychological space supplemented with
an optimized set of selective attention weights. The idea
that classification decisions are a function of distance (or
similarity) to stored reference points accords with Shep-
ard’s (1957, 1987) universal law of generalization. Indeed,
many reference point models explicitly adopt Shepard’s
mathematical formulation of stimulus generalization (e.g.,
Kruschke, 1992; Nosofsky, 1984; see also Love et al., 2004).

We report behavioral results that challenge the idea that
human category learning can be reduced to stimulus gen-
eralization. Learners received classification training on a
variant of the XOR category structure with two continu-
ous dimensions and one of the four quadrants absent from
the training set (partial-XOR). In one experiment (and two
replications), we found that 25-50 % of learners general-
ized by extrapolating the Reduced (one-quadrant) category
to exemplars in the missing quadrant—even though the test
items were more proximal to members of the Complete
(two-quadrant) category. Follow up experiments establish
that these learners did not classify items in the missing quad-
rant by chance, and that they did not view members of the
Reduced category as more similar to the items in the missing
quadrant.

These results raise a challenge to accounts of categoriza-
tion based on stimulus generalization from stored points of
reference within a task-independent psychological space. To
be clear, the argument we put forward is not that catego-
rization cannot be explained on the basis of some form of
similarity—not only is DIVA a similarity-based model, but
the broader concept of similarity is extremely flexible and
there are several ways of modifying reference point models
to enable apparent extrapolation against distance to exem-
plars. For example, it is still possible that learners may
have modified their category representation upon exposure
to stimuli in the untrained quadrant during the test phase
(i.e., Zaki and Nosofsky, 2007). This account would suggest
that, initially, learners randomly responded to items in the
untrained quadrant. After committing to a response, learners
may have recruited additional reference points associated
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with the category that they responded with. Subsequent
exposures to members of the untrained quadrant would then
follow the classification given to the first item. Although it is
difficult to directly test this account with the available data,
a close inspection revealed that participant generalization
often deviated from early responses—indeed, some extrap-
olators even classified the first item as a member of the
Complete category. Zaki and Nosofsky (2007) point to the
potential impact of this phenomenon when learners are pro-
vided a weak training regimen and then asked to complete a
lengthy test phase. The present circumstances are not a good
fit: learners were performing nearly perfectly by the end of
a training phase of substantial length before a considerably
shorter test phase.

Other formulations of the reference point approach aside
from exemplar-based models are equally committed to sim-
ilarity as distance to reference points. That is, the central
tendency of each of the two obvious clusters of the Com-
plete category (or that of more finely divided clusters) offers
no advantage in terms of proximity to the test items in the
untrained quadrant. Similarly, a pure prototype account of
the Complete category would reduce the bimodal distribu-
tion to the central tendency at the origin—which is closer
to the untrained quadrant than the members of the Reduced
category.

Our results are therefore problematic for similarity-
based accounts of categorization, as constrained by the core
assumptions of applying stimulus generalization to category
learning. We argue that the present classification learning
data are not well explained by attention-weighted distance
to stored points of reference, assuming that (1) reference
points are represented in a task-independent psychological
space of the stimuli, and (2) the reference points correspond
to exemplars or averages of exemplars. Instead, investi-
gators must look beyond categorization as similarity to
reference points in studying the processes used to learn and
represent category knowledge.

Looking outside of the reference point framework,
another line of interpretation of our results arises from a
rule-based perspective on category learning. Noting that
extrapolators generalize in accord with the logical struc-
ture of full-XOR, is it possible that these learners acquired
the categories according to a verbalizable logical rule? If
so, a sophisticated rule-based models of category learn-
ing (i.e., RULEX; Nosofsky and Palmeri, 1998; Nosofsky
et al., 1994b) might provide an account of the generalization
phenomena observed. We have not conducted simulations
to address this possibility, though it should be noted that
RULEX follows the fundamental design principle that sim-
pler rules are learned before more complex rules. A simple
rule can be formed to pick out the Reduced category (e.g.,
dark AND small). A rule based on the Complete category
(e.g., bright AND small OR dark AND large) would be

more complex, although a shorter version of the rule is also
viable: (e.g., bright OR large). Both of the simpler logical
forms predict proximity-based generalization (the Reduced
category-based rule excludes items that are bright and large;
the simple Complete category-based rule includes items
that are bright and large), whereas only the complex form
predicts extrapolation.

Remarkably, the present phenomenon—that two distinct
profiles of generalization can arise after training on the
partial-XOR structure—is problematic to nearly all vari-
eties of psychological theory. However, this is not a mystery
without a clue. The successful simulation results with DIVA
show that a formal model of category learning can predict
the behavioral finding. What about DIVA underlies its suc-
cess? One important property of DIVA is that the model
does not entail an a priori commitment to representational
constructs (exemplars, prototypes, rules). Instead, DIVA
uses error-driven learning to induce a model of the distri-
butional character of each category. Examination of learned
DIVA networks reveals that the model is highly sensitive to
the within-category feature correlations describing each of
the partial-XOR classes. Extrapolation of the Reduced cat-
egory follows directly from the knowledge that members
of the Reduced and Complete categories follow opposite
correlations—exemplars within the critical region are there-
fore more consistent with DIVA’s knowledge of the Reduced
category.

DIVA’s success can more broadly be attributed to its
ability to more flexibly construct internal representations—
a property that is lacking in traditional reference point
approaches. However, DIVA’s learning is in no sense under-
constrained. Because DIVA’s learning objective is autoasso-
ciative (i.e., feature reconstruction), each category’s repre-
sentation can be considered as a reconstruction space into
which any stimulus can be projected. The location and shape
of the space reflects the model’s expectations about the cat-
egory, and the training items act as the primary constraint
upon these properties: DIVA will find a local minimum solution
to the optimization problem of reducing reconstructive error
for known category members. The remainder of space gets
carved up in different ways depending on the nature of
the solution. In this manner, DIVA divides the entire input
space into regions that are better handled by each cate-
gory channel (we note the contrast here with Kruschke’s
(1992) critique of back-propagation as it operates in a tra-
ditional multi-layer perceptron architecture). Our work with
DIVA on partial-XOR has shown that the reconstruction
space associated with the Complete category is fairly stable,
while the shape of the space associated with the more local-
ized Reduced category varies considerably depending on the
random initial weights and presentation order of the training
exemplars. Extrapolation is achieved under a particular ori-
entation of the Reduced category reconstruction space—to
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the extent that the space overlaps with the untrained quad-
rant, generalization by extrapolation ensues.

Conclusions

It is largely unheard of for exemplar models to fail to
account for human performance on the type of straight-
forward artificial classification learning tasks that are their
‘home turf’. Here we have addressed the link between cat-
egorization and stimulus generalization—is it a matter of
distance from reference points or is it a process more like
that represented by DIVA based on building generative
models of the categories? The present findings provide evi-
dence of a weakness in the stimulus generalization account
of human category learning: it is possible to be a good match
to the category, but a poor match to its exemplars.
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