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Since the work of Minsky and Papert (1969), it has been understood that
single-layer neural networks cannot solve nonlinearly separable classifi-
cations (i.e., XOR). We describe and test a novel divergent autoassociative
architecture capable of solving nonlinearly separable classifications with
a single layer of weights. The proposed network consists of class-specific
linear autoassociators. The power of the model comes from treating clas-
sification problems as within-class feature prediction rather than directly
optimizing a discriminant function. We show unprecedented learning
capabilities for a simple, single-layer network (i.e., solving XOR) and
demonstrate that the famous limitation in acquiring nonlinearly separa-
ble problems is not just about the need for a hidden layer; it is about
the choice between directly predicting classes or learning to classify in-
directly by predicting features.

1 Introduction

One of the first things anyone learns about artificial neural networks is
that a single-layer network can solve only linearly separable classifica-
tion problems. This essential bit of dogma in the field is attributed to the
famous/infamous book Perceptrons by Minsky and Papert (1969), which
includes the canonical demonstration that a standard single-layer percep-
tron (Rosenblatt, 1958), directly associating dimensional inputs with class
labels, cannot learn the exclusive-OR (XOR) function. This resulted in a
reduction in neural network research until the popularization of the back-
propagation algorithm for training multilayer networks (Rumelhart, Hin-
ton, & Williams, 1986; see Schmidhuber, 2015, for a full treatment of the
discovery of backpropagation). Today, such multilayer perceptrons (MLPs)
maintain considerable currency, especially with the rise of deep learning
techniques that use multiple hidden layers.
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Figure 1: (Top left) Depiction of the network. (Bottom left) Illustration of NLS
classifications. (Right) Model performance on various NLS classifications.

In this letter, we show how a simple single-layer network with standard
delta rule learning (Widrow & Hoff, 1960) can successfully learn nonlinearly
separable (NLS) classification problems. The solution lies with how the
classification task is realized in the network architecture. As opposed to
the canonical conception of a network trained to predict the class from the
features, we train the network to predict the features with respect to each
class. Rather than unsuccessfully optimizing a set of weights to discriminate
between classes that are not subject to a linear discriminant, the network
we present instead learns weights that linearly approximate the internal
structure of each class and uses each item’s consistency with that structure
as the basis for classification.

The divergent autoencoder (DIVA) is a cognitive model of human cat-
egory learning (Kurtz, 2007, 2015) developed based on this core design
principle: a separate channel of autoassociative learning for each class with
a shared hidden layer. For each training item, the hidden → output weights
are updated only along the correct category channel, and the shared input
→ hidden weights are updated every time. We present a novel extension
in the form of a neural network that uses the divergent autoassociative
approach to classification without the hidden layer (see Figure 1). Inputs
nodes are fully connected to the autoassociative output channels for each
class (note that this is equivalent to separate linear autoassociators for each
class) such that network output is calculated as

Okc =
j∑

1

I jWjkc, (1.1)

where I is a vector of inputs and W is a j-by-k-by-c weight matrix connect-
ing input dimensions j to output dimensions k along category channels c.
The simplest possible response rule is used to translate the output to a
classification outcome by selecting the channel with the most accurate
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reconstruction measured as mean-squared error (MSE) between the net-
work input I and class reconstruction O (note that MSE is not evaluated
along the bias unit):

MSEc = 1
k

k∑

1

(Ik − Okc)
2. (1.2)

To be clear, any neural net classifier compares the output activation level
relative to the target for each class in order to select a response. In a tradi-
tional perceptron architecture, the activation level of one node is shorthand
for the performance error of the network on that class; in a divergent au-
toassociator, the performance error across the nodes dedicated to that class
is used, and the shortcut does not apply. The response rule is independent
of the network’s learning procedure and is used only to obtain class pre-
dictions. We thank an anonymous reviewer for noting that support vector
machines (Cortes & Vapnik, 1995), echo state, and liquid state machines
(Jaeger, 2001; Maass, Natschläger, & Markram, 2002) overcome limitations
of single-layer neural networks by a nonlinear prewired preprocessor and
that the response rule of our neural network may be viewed as a conceptu-
ally similar prewired postprocessor. Weights are updated using delta rule
learning to minimize reconstruction error on the channel of each item’s
correct class,

�Wjkc = α(Ik − Okc)I j, (1.3)

where α is a learning rate parameter.

2 Simulations

We conducted three tests of the proposed network on NLS classification
problems using 10 epochs of training (batch update) with zero-valued ini-
tial weights and a learning rate of 0.1. All problems were based on binary
input features set to values of ±1. The network was fully connected (in-
cluding weights between the input and output nodes coding for the same
dimension) and used linear output units. Note that the qualitative perfor-
mance of the network is highly consistent across a variety of design choices,
including small random initial weights, learning rate values, online (trial)
weight update, output unit activation function (i.e., linear / logistic), and
connectivity pattern (i.e., with or without same-dimension connections).

Our primary focus was the XOR problem central to the critique made by
Minsky and Papert (1969). In addition, we tested the model on an NLS prob-
lem used in an influential psychological study of human category learning
(Medin & Schwanenflugel, 1981, experiment 4). This problem consists of six
items divided into two categories: [− − +, − + +, + − −] and [− + −, + −
+, + + −] (see Figure 1 for a visualization). We also included the three-bit
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parity problem (see Figure 1) that is notable for lacking any second-order
statistical regularities within or between classes (also known as type VI
from Shepard, Hovland, & Jenkins, 1961). We expected the network to be
unconstrained by the linear separability of classes because it is not directly
trained to make a class discrimination; instead it is learning within-class
feature relationships. The network was not expected to perform well on
three-bit parity since there are no such regularities to learn.

3 Results

The single-layer network easily mastered the XOR problem (see the results
in Figure 1). The network learns positive weights on the same-dimension
connections (since each dimension predicts itself), but this merely promotes
copying of any input pattern on both channels. Successful solution of the
classification problem lies with the weights connecting different dimensions
along each autoassociative channel (e.g., I1 → O2). In order to predict the
input activations at the output layer, these weights for category 1 [−−
and ++] become positive, while the weights for category 2 [−+ and +−]
become negative. Each category channel therefore learns a representation
enabling accurate reconstruction of its own exemplars, while producing
poor reconstructions of exemplars from other classes, effectively solving
the classification.

In the remaining tests, we sought to extend beyond the XOR problem
and establish boundary conditions. We found that the network mastered
the Medin and Schwanenflugel (1981) NLS classification but not the three-
bit parity problem (see Figure 1). In both cases, the network learns positive
weights for the same-dimension connections, but these do not provide the
solution. In the Medin and Schwanenflugel (1981) NLS problem, the net-
work relies on a critical within-category regularity: two perfectly opposed
dimensions (I1 and I3 in category 1 and I2 and I3 in category 2). The net-
work learns negative weights connecting these dimensions and a negative
bias for the remaining dimension. For the three-bit parity problem, there
are no first- or second-order regularities. Accordingly, the reconstructions
are equally good for each channel, and the classification problem is not
solved. This set of simulations reveals a general principle governing the net-
work’s classification performance: the network succeeds when the classes
have nonaligned, within-category regularities in the form of correlations
on different dimensions (as in the Medin and Schwanenflugel problem) or
correlations in opposing directions on the same dimensions (as in XOR).

4 Discussion

These results allow us to draw a fairly precise conclusion: a single-layer
network using divergent autoassociative learning solves classification prob-
lems without being constrained by linear separability. To be clear, we have
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not altered any of the core computational tools commonly put to use in neu-
ral network modeling. The advance lies with reformulating classification
in terms of feature prediction rather than direct class prediction—a shift
that alters a fundamental performance constraint because the network is no
longer addressing the classification problem through an explicit discrim-
inant boundary between classes. But while the linear separability of the
classes is unimportant to the learning of a class-specific autoassociator, our
network is limited by a different type of constraint: the classes must have
nonaligned, within-class regularities. Notably, the failure of a single-layer
network to distinguish between classes that have matched regularities or no
second-order regularities is not a terrible limitation for a simple classifier.

It is possible to interpret the network’s performance under a number
of theoretical frameworks—for example, as a Bayesian discrimination or
gaussian density estimation. Our primary concern lies within the neural
network field where there is a canonical conception regarding the limita-
tions of neural networks without hidden layers. Our results show that this
view is in fact a product of the typical instantiation of classification tasks
in an architecture with features as inputs and classes as outputs. As a gen-
erative rather than discriminative method for classification learning (Ng &
Jordan, 2002), the divergent autoassociative approach of predicting features
on the way to predicting class alters our most basic assumptions about what
a standard single-layer network can do.
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