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Abstract 

A key goal of category learning research is to describe how 
categories are represented. Essential to this research are 
measures that provide investigators insight into exactly what 
learners have gained from their training experience. In this 
paper, we review and explore three commonly used measures: 
A) ease of acquisition, B) generalization, and C) single 
feature classification. We report results of a category learning 
experiment in which these measures are compared side-by-
side. We find that generalization and single feature 
classification data are the more informative measures; we also 
find a novel inconsistency between them. Specifically, many 
learners who generalize based on only a single dimension 
demonstrate robust knowledge of both dimensions during the 
single feature classification test. We discuss implications for 
methodology in the field, as well as for selective attention and 
theories of human category learning. 
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Introduction 
A fundamental assumption in theories and models of 
category learning is that a particular process leads learners 
to develop a core category representation that they can then 
put to use for subsequent categorization tasks. One of the 
major goals of category learning research is to describe this 
representation, as well as how it is acquired. Crucial to this 
goal are measures that provide insight into the learned 
representation. In this paper, we investigate three dependent 
measures that are commonly used in the field and explore 
the kind of information that is garnered from each. 

Ease of acquisition measures (e.g., mean training 
accuracy, end-state accuracy, learning curves, blocks to 
criterion) are among the most frequently used measures in 
the field. In a classic study, Shepard, Hovland, & Jenkins 
(1961) analyzed the ease of acquisition of six elemental 
classifications based on eight stimuli varying in three binary 
dimensions. They observed that five out of the six elemental 
types were learned more quickly than would be predicted 
based on an identification study using the same stimuli (i.e., 
the mapping hypothesis; Nosofsky, 1984). Subsequent work 
in formal modeling provided an account of the ease of 
acquisition differences among the six types based on the 
application of selective attention to exemplar 
representations (Nosofsky et al., 1994).  

Acquisition data, however, do not always specify what 
exactly learners have gained from the category learning 
experience. This point becomes especially apparent for 
classification problems that have multiple solutions. For 

example, the Type IV structure from Shepard et al. (1961) is 
often described as a linearly separable family-resemblance 
(Rosch & Mervis, 1975) structure whereby each category 
consists of a prototype and three examples that deviate by a 
single feature. Learners can therefore accurately classify all 
the training examples by comparing each to the prototypes. 
Importantly, Type IV mastery can also be achieved 
according to a rule-plus-exception solution (Nosofsky, 
Palmeri & McKinley, 1994) whereby each category is 
defined by a rule on a focal dimension along with a 
memorized exception to the rule. Based on the acquisition 
data alone, it is difficult to determine which of these 
solutions are actually learned. Even within the realm of 
similarity-based accounts, learning data alone often does not 
differentiate among models based on different types of 
reference points (prototypes, exemplars, clusters) or 
alternatives to reference points (e.g., DIVA, Kurtz, 2007) 

Given this limitation, we need to extend our methods for 
probing the learned category representation. In classic work, 
Roger Shepard did much to establish the primacy of 
generalization in psychological research. Shepard put 
forward a universal law that describes stimulus 
generalization as an exponential function of distance in 
psychological space (Shepard, 1957, 1987). In Shepard’s 
work, generalization was used to gain insight into how 
learners interpreted the dimensions of a stimulus space. 
Similarly, generalization after category learning offers 
investigators greater insight into what is gained during 
category learning experience (for a review of generalization, 
see Levering & Kurtz, 2010).  

Generalization after category learning was an important 
testing ground in the clash between prototype and exemplar 
theories of categorization (e.g., Homa, 1984; Nosofsky, 
1992). The 5-4 category structure (Medin & Schaffer, 1978) 
has been a particularly prominent structure in this regard. 
The 5-4 structure is based on nine training examples that 
vary in four binary dimensions and are divided into two 
categories. Crucial to studies of the 5-4 structure are seven 
novel examples that are classified after a set of training 
trials. By analyzing patterns of generalization to these items, 
investigators were able to describe what type of knowledge 
(e.g., prototypes, exemplars) was learned during the training 
(Johansen & Palmeri, 2002; Medin & Schaffer, 1978; Smith 
& Minda, 1998). 

In a different approach to studying generalization, 
Erickson and Kruschke (1998, 2002) explored whether 
exemplar models could account for rule-like responding. In 
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their study, learners received training on two novel 
categories based on a unidimensional rule with exceptions. 
After training, learners generalized their learning by 
classifying a large number of test items. Critical test items 
were perceptually similar to the exceptions, but also 
classifiable using the rule. Contrary to predictions from a 
pure exemplar account, learners generalized based on the 
rule (though see Nosofsky & Johansen, 2000 for a 
conflicting set of results). The authors suggested that 
multiple categorization systems were needed to account for 
the rule-based generalization that was observed – they 
developed ATRIUM, a hybrid of rule- and exemplar-based 
approaches to account for the results. 

The information contained in gradients of generalization 
is obviously very rich and offers detailed insight into what 
has been learned, however there are many cases in which it 
is not possible to collect generalization data. The stimulus 
sets used in Shepard et al. (1961), for example, do not leave 
room for a generalization set. In situations where 
generalization is not possible or does not distinguish 
between hypotheses, yet another option is required. 

Single feature classification tests offer a possibility in this 
regard. Such tests usually involve the presentation of a 
partial example (a single feature), and the learner is asked to 
indicate the category the feature is most likely to occur in. 
By testing individual features, these tests provide an 
opportunity to assess learners’ knowledge in ways that 
would not be revealed in a full-item classification task 
(Levering, 2012).  

Such tests have been used in the literature on learning via 
feature inference. Feature inference research has converged 
on the hypothesis that classification results in knowing the 
class assignments of exemplars, while inference learning 
results in knowledge about the prototypical values 
categories tend to have on each dimension (Yamauchi & 
Markman, 1998; Markman & Ross, 2003). Anderson, Ross, 
and Chin-Parker (2002) reported a test of this hypothesis in 
a study that had learners trained on a four-dimensional 
family resemblance structure. After the training phase, all 

learners were asked to complete a single feature 
classification and full feature classification test. The authors 
found that inference learners were more accurate on the 
single feature test, whereas classification learners were more 
accurate on the full feature test.  

Despite their wide use in the literature, these three 
measures have not been compared side-by-side. In this 
paper, we seek to describe the type of information that can 
be gleaned from each measure and to explore the 
consistency of the conclusions that can be made from each 
measure. 

The Current Study 
In this experiment learners receive supervised classification 
training on a ‘minimal case’ category structure. The two 
categories are separated in opposite corners of a two 
dimensional space (see Figure 1). We selected this structure 
due to its pure simplicity – yet with the property that it is 
possible to learn to accurately classify all of the training 
items according to a variety of distinct strategies. For 
example, learners may focus on either one of the two 
stimulus dimensions, effectively forming a rule-based or 
unidimensional strategy. Alternatively, learners may 
integrate information across both dimensions (Ashby & 
Maddox, 1990), forming a diagonal boundary that separates 
the categories.  

After a training phase, learners are asked to classify a 
generalization set of examples sampled from around the 
stimulus space. After generalization learners complete a 
single feature classification phase. 

Method and Results 
Participants and Materials. 75 undergraduates from 
Binghamton University participated in partial fulfillment of 
a course requirement. Stimuli were house-like figures that 
varied in the position of the lower box (door) and 
slope/height of the upper triangle (roof). Sample stimuli are 
shown in Figure 1. Participants were not informed that the 

A A
A A

B B
B B

Figure 1: Left: A schematic of the ‘minimal case’ structure in which categories are separated across both 
stimulus dimensions. Middle: sample full-feature stimuli taken from the extremes of the space. Right: 

Sample partial-feature stimuli taken from the extremes of the space. 

2063



 

figures could be interpreted as houses (13.5% reported this 
interpretation of the stimuli in a post-experiment 
questionnaire). The stimuli were automatically generated at 
8 positions along each dimension (8 door * 8 roof = 64 
stimuli). 
 
Procedure. Each participant completed 32 training trials 
(4 blocks consisting of the 8 training examples). After 
training, participants completed 64 generalization trials 
consisting of examples sampled at 8 positions on each 
dimension. Note that all 8 training items were presented 
during generalization. After generalization, each 
participant completed 16 single feature classification trials 
consisting of images containing only one stimulus 
dimension (door or roof), sampled at the same 8 positions 
on each dimension. Participants were informed that there 
would be test trials prior to beginning the experiment.  

On each trial, a single stimulus was presented on a 
computer screen and learners were prompted to make a 
classification decision by clicking one of two buttons 
(labeled ‘Alpha’ and ‘Beta’). During the training phase, 
learners were given feedback on their selection. Feedback 
was not provided during the generalization or single feature 
phase. 

 
Results. 6 participants were excluded from further analysis 
due to A) experimenter error, or B) failing to meet at 7/8 
accuracy criterion on the training items presented during the 
generalization phase.  

From the generalization test phase, participant responses 
yield a generalization gradient. By comparing each gradient 
to three idealized gradients (rule-based generalization using 
exclusively the door or roof dimensions, and integration of 
both dimensions; Figure 3), we were able to profile each 
learner’s generalization strategy. The majority of learners 
(58/69) generalized using a single dimension and a minority 
(11/69) generalized using both dimensions (diagonally). 
These results are consistent with our previous reports 

(Conaway & Kurtz, 2013), as well as other reports of a 
unidimensional bias unsupervised classification (Ashby, 
Queller, & Berretty, 1999), supervised classification 
(Erikson & Kruschke, 1998, 2002), and free-sorting 
(Garner, 1974). Given this literature, it is interesting that a 
significant minority of our learners did not generalize 
unidimensionally and instead integrated the two dimensions 
for the purposes of their generalization responses. 

The learners in each generalization group seem to have 
learned markedly different category representations. 
Accordingly, we analyze the training and single feature test 
data with generalization profile as a between-subjects 
variable. Generalization results are depicted in Figure 3. 

The training data are depicted in Figure 2. The profile 
groups did not differ in the ease of acquisition of the 
categories: despite finding markedly different solutions to 
the category structure, all three groups mastered the 
categories at the same speed, F(2, 66) = 0.193, p=0.826. 
This result, however, must be qualified: all three solutions 
to the minimal case categories are relatively ‘easy’ to learn, 
thus we may be observing a ceiling effect in our data. 
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Figure 2: Training accuracy by block.  Each 
generalization profile is shown separately. 
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Figure 3: Aggregate generalization gradients. Learners were grouped based on the profile type that best matched 
their gradient. The proportion of learners placed in each profile is specified below the gradient. Learners were 

more likely to select to the Roof dimension as their basis for generalization. Left: generalization based on the door 
dimension. Middle: generalization based on both dimensions. Right: generalization based on the roof dimension.  
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The profiles did, however, diverge during the single 
feature classification phase (Figure 4). Learners who 
generalized using a single dimension were more accurate on 
their selected (primary) dimension than their discarded 
(secondary) dimension, t(57) = 5.7, p<0.001. This results is 
consistent with the intuitive notion that unidimensional 
responding reflects or entails a lack of knowledge about one 
or more dimensions. That is, by selecting as the basis for 
generalization one dimension over another, learners forego 
the opportunity to learn about a secondary dimension. 

Contrary to this notion, however, we found that 
unidimensional generalizers preformed above chance (> 4/8 
correct) on the secondary dimension, t(57) = 5.0, p<0.001. 
This result suggests that these learners do in fact possess 
knowledge about the dimensions that are not being used as 
the basis of generalization, though it is less fully developed.  

A histogram of the single feature classification data 
(Figure 5) shows that one subset of the unidimensional 
generalizers retained full knowledge of the secondary 
dimension, whereas a second subset did not. Indeed, 22.4% 
of unidimensional generalizers responded less accurately on 
single feature trials involving the feature they selected 
during generalization. 

This result suggests that, for a notable subset of learners, 
the unidimensional basis for generalization reflects a 
strategy or convenience as opposed to a direct 
characterization of their category knowledge. These learners 
appear to possess a degree of category knowledge that 
remains latent during the generalization task, but becomes 
manifest in the single-feature classification task. 

Discussion 
Ease of acquisition, generalization, and single feature 
classification data are frequently used to probe the category 
representation that arises from a category learning 
experience. In our study, we compared these three measures 
directly. We trained human participants on a ‘minimal case’ 

category structure that has three qualitatively different 
solutions. After training, learners were asked to classify a 
large number of examples sampled around the stimulus 
space (yielding a generalization gradient of each learner’s 
responses) and then asked to complete a single feature 
classification phase. 

We found that most learners generalized their knowledge 
using only one of the two possible stimulus dimensions, 
though a notable subset generalized using both dimensions. 
We then analyzed the rest of our data with generalization 
profile as an independent variable.  

Despite finding markedly different solutions to the 
minimal case structure, we found that these groups did not 
differ in learning speed: our ease of acquisition data do not 
provide insight into the learned solution. This result, 
however, could also be due to a ceiling effect.   

We found that unidimensional generalizers responded 
more accurately to the dimension they selected during 
generalization. These result is consistent with the intuitive 
notion that rule-based or attentional responding implies that 
there is an absence of knowledge about one of the 
dimensions—that these learners generalized based on single 
dimension because they only learned about a single 
dimension. 

Unexpectedly, further analysis of this data revealed a 
considerable number of unidimensional generalizers who 
retained full knowledge of the dimension that was not 
selected for generalization. Even as the generalization data 
would seem to reveal the essential nature of what was 
actually learned, we find that the single-feature 
classification results often revealed category knowledge that 
was simply not called upon for the purpose of generalizing. 

Implications for Methodology 
One of the central goals of research in category learning is 
to understand the nature of learned category representations. 
According to our data, conclusions that can be made about 
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Figure 4: Single feature classification accuracy, 
broken down by generalization profile. 
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Figure 5: Single feature classification accuracy for 
unidimensional generalizers. ‘Primary’ and ‘Secondary’ 
refer to the dimension used (or not used) as the basis of 

generalization.  
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category representations depend on the type of probe used 
to access the representation. This idea is most dramatically 
embodied by our novel result that, for many learners, 
unidimensional generalization is strategic and does not 
reflect the full extent of the learned representation. Based on 
the generalization data alone, we may have assumed that 
unidimensional generalization is the consequence of a lack 
of knowledge about one of the dimensions, but our single 
feature classification data suggest that this is not always the 
case. Thus, our results demonstrate that it is crucial to use a 
rich set of test measures that will most fully describe the 
type of category knowledge that has been learned.  

Generalization has long been held in high regard due to its 
ability to describe what learners have gained through a 
learning experience (Shepard, 1957, 1987). Indeed, it often 
assumed that gradients of generalization provide a 
comprehensive depiction of learning. Our data suggests that 
this may not always be the case—many of our learners 
engaged only a subset of their knowledge for the purposes 
generalizing. More research, however, is needed in order to 
determine the mechanisms underlying this result. 

Implications of Theories of Category Learning 
One of our core findings is that many learners who 
generalized using a single dimension were also able to 
respond with high accuracy on both dimensions during the 
single feature test. That is, the rule-based or attentional 
responding we observed during generalization did not 
always indicate that there was a lack of knowledge about 
one of the dimensions. This novel result may have broad 
implications for theories and models of category learning. 

Our results can be interpreted in terms of a 
generative/discriminative methods distinction made in the 
machine learning literature (Ng & Jordan, 2001). 
Discriminative methods are used to efficiently learn task-
specific representations that can discriminate among 
categories. Generative methods allow models to learn 
multifaceted representations that describe each category as 
fully as possible. Whereas a discriminative account of 
category learning would predict a static application of 
category knowledge, many of our learners seemed to apply 
their category knowledge differently in response to new task 
demands.  

Contemporary reference point theories (such as the 
prototype and exemplar views) do not immediately provide 
an explanation of this finding. Many reference point models 
(e.g., Kruschke, 1992; Minda & Smith, 2002) assume that 
selective attention is used to optimize a subsequent 
similarity calculation—that attention is used to increase the 
similarity of reference points within each category and 
decrease similarity between categories. To many of these 
theories, attention is regarded as a fundamental aspect of 
category acquisition (e.g., Kruschke, 2005)—attending to 
diagnostic dimensions allows observers to optimize the 
scope of their learning, thereby expediting the learning 
process. Reference point theories would therefore predict 
that these learners acquire very little (or no) knowledge 

about how the categories vary on the dimension they 
discarded for the purposes of generalization. In order to 
explain our findings, the manner in which attention is 
formulated would thus have to be altered substantially.  

DIVA (Kurtz, 2007) offers a somewhat different approach 
to modeling category learning. Rather than prototypes or 
exemplars, DIVA represents categories as coordinated 
statistical models using dedicated output channels in a 
DIVergent Autoencoder. An updated version of the model 
utilizes a late-focusing mechanism that allows the model to 
more heavily weigh dimensions that are disparate across 
categories. Crucially, DIVA’s focusing weights are not 
learned, but generated dynamically on each trial, according 
to the following formula:  

 
Where A and B represent output channels dedicated to the 

categories, i indexes the stimulus dimension, β is a free 
parameter (0 ≤ β ≤ ∞) that determines the degree of 
focusing, and k is a constant set to (max-min) over 
dimension values. 

DIVA’s focusing mechanism serves to mediate between 
the generative knowledge learned by the divergent 
autoencoder and the classification decisions that are being 
made at a later stage. DIVA therefore suggests that learners 
gain a full representation of the categories, and that focusing 
is applied for the purposes of making decisions. Given this 
framing, DIVA provides an additional interpretation of our 
results—it is possible that our learners gain a full, non-
attentional representation of the categories during the 
training phase. After learning, this representation can be 
applied in different ways depending on the constraints 
placed on learners by the task. 

A somewhat more radical account of the present findings 
could be ventured: perhaps even the most simple category 
representations are not the stable entities we presume them 
to be. Such an account of the data suggests that learners 
differentially access or apply their categories depending on 
the way they are asked to use them. This account dovetails 
nicely with the literature on category learning by different 
modes (e.g., Yamauchi & Markman, 1998; Markman & 
Ross, 2003). The common theme is that the nature of the 
category knowledge is very much dependent on the manner 
in which the categories are used: either during learning or at 
test. More research is clearly needed to elucidate this 
theoretical interpretation. 
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